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I. Introducfion

During the past 13 months considerable prdgréss has been made under
~ the present grant. The application of time-like damping and Riegel's
Rule to the transonic small perturbatﬁoh equations has beenlinveStigated
and reported. In addition, a computer program that utilizes the full
equations in a rectangular coordinate system has been developed. This
program uses time-like damping and can be used in either the direct (body
specified, surface pressure and flowfield unknown) or design (surface
pressure specified, body and flowfield unknown) mode. A brief discussion
of the results of these efforts is presented in the fo11owing sections.

II. Swmall Perturbation Work

The-nonlinear transonic small perturbation equations have been
ana1yzed according to the stability criteria presented by Jameson,
and it has begn determined that time-like damping is necessary in order
to ensure stability. This damping, which is of the form_¢xt, has been
1hcorp0rated into the existing small perturbation equation computer
program. - Typical results are shown on Figure 1. For this case, a NACA
0006 at Mach O.Q,Agood results could only be obtained with the inclusion
of damping. Similar results have been obtained for NACA 0012 airfoils
and 1ifting cases. |

The small perturbation studies have also included the application
Riegel's Rule to round-nosed airfoils. In general, the apﬁ]ication of
Riegel's Rule has béen‘found to improve the results obtainable from the
small perturbation equations. This work.has'been reported. (See 1ist
of publications.)

III. Full Equation Work

A summary of this work is included as Appendix A.
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ABSTRACT

A numerical method for the design.of transonic airfof]s and the analysis
of the flow about them should not only be accurate but also be as simple as
possible in concept and approach. In particular, it should use coordinate
systems, input variables, and boundary condition treatments that can be easily
understood by the user., In addition, it wou]d be desirable if the méthod
yielded the a{rfoil design shape for a given set of conditfons withdut iter-
ation and used or computed hose ﬂnd tail shapes that are aerodynamically and
structurally reasonable. Finally, it should not be limited to shocked or
;hockTess flows, but should be able to handle both types. |

Previous design methods "and programs have either been limited to shockless
designs (1).haying complicated 1nputé not easily related to the problem by the
user, or have used the small perturbation equations which may be inaccurate
_ for thick blunt-nosed airfoil designs, (2) or have required iterative changes
in the des{red pressure distribution. (3) The purpose of this paper is to
'pkesent and discuss a new numerical method suitable for the analysis or design
of supercritical transonic airfoils.

~In order to achieve'accuracy, the method‘uti1izes the full inviscid
_potentia] flow equations; and, in order to remain simple it solves the problem .

in a stretched Cartesian_grid system. See Fig. 1. No complicated mappings etc.
of the airfoil to a circle or other shape are used. The resu]ﬁant working
computer program has several unique features. First, it canlbe-used in either
the direct (analysis) mode in which the airfoil shape is prescribed and the
. flowfield and surface pressures are determined, or in the inverse (design)
mode in which the surface pressures are given and the airfoil shape and flow-

field are computed. Second, it uses for the first time in a desién program



" the rotated finite difference scheme, proposed by South and Jameson, (4,5)
which always has the correct zone of dependence in supersoni¢ regions but.
does not require the coordinate systeﬁ to be closely aligned to the flow
difection. Third, unlike previous methods, the present program determines
the airfoil'shape simu]taneous]yrwith the f]qwfie]d relaxation so]utiﬁn.

‘ Thqs, when the converged solution is dchieyed, tHe final airfoi] design is
known, and iteration is not required.

'Nith respect to the rotated difference scheme, it should be noted that
the present approach is different from that used in Ref. (4-5). While still
 rotating the differeﬁce scheme and viewing the relaxation proceés as a time-

Tike procedure, time terms in th; streamwise direétion are not introduced
implicitly as coﬁsequence of the manner in which the difference expressions

are formulated. Instead they ére added explicitly and as in Ref. (4-5) used
- to control the stability and convergence of the relaxation proceés. (Note that
thesq time-1like termslcorrespond to thelchange between relaxation cycles and
thﬁs approach zero as the solution converges.) By exp]jcitly adding the time-
Tike dampiﬁg, no additional damping is required; and the amount of damping required
can be easily determined by the user from the maximum local Mach'number. In
the design case, the latter wbuf& be known from the assumed surface pressure
distribution. A detailed discuséion of the numericaf scheme and its stability
will be.pfesented in the full paper. B

| In the Cartesian like system, the airfoil éurface and grids lines do not
‘coincide. dince in the design case the surface is not known a priori, this
~lack is not a parti§u1ar disadvantage, but nevertheless appropriate boundary
values at the computational boundary nust be determined. The paper discusses
various approaches, points out which are unstable and which are stahle, and
shows that accurate yet simple and easily understood relationships can be

established by expressing the velacities at the surface in a Tay]of series



about a boundary grid point. This approach is successfully used 1nrboth the
éna]ysis (direct) and inverse cases (design). |

When the present program is used in the design mode, the.shape of the
nose reéion (typically 6-10% of the chord) is specified and the pressure is
prescribed over the remainder of the airfoil. This procedure is used for

- several reasons. First, the nese region must be accurately kﬁown in order to
correcfly fabricate an airfoil. Thus,'by-prescr{bing the nose Shape, a possibie
major source of error 1s.e]im1nated from the design procedure. Second]y,.the
boundary cnndftioh in the inverse region is be and a starting value must be
known, With the present scheme, this value is determinedlby,the direct
solution in the nqse'region and ;eed not be estimated or iterated for. Third,
in some cases the deéigner may wish only to modify the aft portion of the air-
foil. This can be.done with the present program since the switch point'from
direct to inverse can be set anywhere from about 6% chord to the trailing edge’
by an input variable. Finally, and perhaps mos t importantly, specification of
the nose shape gives the designer a physical entitly wherby he can control the
degreelof é]osure'at the tail. This will bexshown_later.

Any new numerical technique can only be verified by comparing its results
with those previousiy obtained b} other investigators. As suggested by Lock,(G)
the NACA 0012 airfoil is an excellent test case because its éhape can be prescribed
analyticaily. Figure 2. compares analysis results obtained by the present.mefhod

'with thoserof Sells (7) for a Tifting subcritica] case. The two sets of data
are always within two percent of each other and the-11ft coefficients agree |
exaét]y. In particular, ndticé tﬁe excellent agreement on the magnitude and

location of. the upper surface pressure peak.

For.supercritfcal cases, éomparison and Qerification 1s somewhat more
difficult. However, a comparison with results obtained using Jameson's

conformal mapping program with 192 points on the airfoil is shown on Fig. 3.



The present hethod results were obtained with mediuﬁ grid which yielded 66
points on the airfoil surface. Notice that the lTift and moment coefficients
Essentia]ly agree exactly and .that the pressure coefficients and shcck location
agree quite well. Similar yerification of the aCcurécy‘of the'present Cartesian
grid Program has been obtained for biconvex and NACA 63A006 airfoils. Based

' upon these results it is believed that the present approach is valid and qu1te
dccurate,

.In‘ordef to verify the accuracy of the design mode of the program,-the Cp -
distribution shown on Fig. 3 was used as input. The resultant slopes for the
designed éirfoil are shown on Fig. 4 and compared with the actual NACA 0012

{slopes. The agreement is excellent even though there is a strong shock on the
upper surface.. For this case the cqmputed surface ordinates were everywhere
‘within 0.33% (T/C)'max of the actual‘NACA 0012 ordinates. fhus, it is belijeved

that the present design scheme 1slaccurate and self-consistent.

As indicated abpve, 1n‘the present program the nose shape can be used by
the desjgner to ;ontro] tail closure. The procedure ié*demonstféted 6n Fig. 5,
which shoﬁg three airfoils a11 designed for the same Cp distribution from 7%
chord to the trailing edge. Airfoil No. 4 has an NACA 0012 nose shape but
too thiék of a taii. (The surfaces shown are displacement surfaces. The
actual airfoil would be obtained by subtracting the displacement th1ckness
~ from those ordinates.) Thus, a nonsymmetrlcaI nose shape having a smaller
leading-edge radius was used on Airfoil No. 5, which resulted in a much bet-
ter tail size. Finally, for Airfoil No. 6 the Tower surface nose region -
ordinates were raised by 0.001, and this led to an even thinner trailing edge.
FigUre & shows another case in which the nose shape was used to control
the trailing edge characteristics. The pressure distribution on this air-

foil, which is the solid curves on Figure 7, was selected to have the same-



1

basic 1ift coefficient and lower surface pressure distribution as an NACA 0012
but without the strong upper surface shock wave. In this case, the nose shape .
is that associated with NACA 0OXX airfoils; ahd, as can be seen, as the Jead-
- 1ng edge radius {s increased, the tail opens up. Obviously any desired thick-
ness of the trailing edge displacement surfaces can be achieved by adjusting
the nose shape. Noticé, also, that this adjuétment does notf require changing
the desired inverse Cp disﬁribution.

~Now a severe test for-a design program is whether or not an'énalysis
or direct so]ﬁtion of the designed airfoil returns the design or inverse Cp
distribution. Figure 7'compares=the inverse Cp used to design airfoil No. 115
with that‘obtainéd from a direct‘solution {airfoil given) using the qrdinateé
for No. 115, The excellent agreement tends to verify the va]igity'and accuracy
;of the airfoils deéigned by the present program. |

A f{na] case is shown on Figure 8.l An arbitrary pressure distribution,
dashed line, having an upper surface Mach number plateau around 1.2 followed
by‘arlarge Jump at 76% chord was.ﬁeiected for the 1nven§erinput. On'the Tower
surface, tﬁe'Cp-was chosen to maintain subsonic flow. However, a bucket se-
lected according to the Stratford criteria was included to enhance lift. As
indicated, the‘design program ugés a backward difference scheme with the Cp
dinput. Thus, in regions of large gradients the output, which is computed by
a central scheme and should be more accurate, will be different,

Now in the course of the inverse §o1ution, the trailing edge displace-
ment surfaées that satisfied the input Cp were not parallel, énd, thus, the
‘inviscid solution reqﬁired a rear stagnation point behavibr. The actual in-
verse Cp (central differences), indicated by the solid line, shows this be-
‘havior. In addition, the wupper surface discontinuity was smoothed. Exami-

nation shows a smooth supersonic bubble and indicates that upper surface.



dece]]eration; while rapid; is not due to a shock wave of any significant
Strength. Also shown is the result of a direct solution, which agrees
well with the actual inverse Cp. The airfoil shown is the actual shape
~after the boundary displacement thickness has beeh_subtrécted. It is be-
lieved fhis result demonstrates that the present program can handle an
A"arbitrary" Cp iﬁput_and will yield verifiable résu1ts:consistent with'phy-
sical reality, even if the input Cp does not.
‘In conclusion, it 1s.be1ieved'that it has been shown that”
(1) It is not necessary to match the computational grid to the airfoil
| surface and that véry gccurate results can be obtained with a
'Cartesian grid;' This may be important for 3-D ca]cu]étions where
mapping to the wing-body surfaces is frequently 1mpraqtiéa1.l
(2) A .design method having simultaneous airfoil update,'a logical
methpd for controlling trailing edge closure, and results that
are consistent and physically correct has been created and in-

-

corporated into a working program.
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